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Die Fluvirucine, eine Klasse von Makrolactam-Antibiotika,
die von Actinomyces-Arten produziert werden, haben wegen
ihrer interessanten Strukturen und vielversprechenden bio-
logischen Eigenschaften Aufmerksamkeit erregt.[1] Fluviru-
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cin A1 1 a und A2 1 b, Vertreter der Fluvirucin-A-Reihe, sind
wegen ihrer geringen Toxizität von besonderer Bedeutung;[2]

allerdings sind sie gegen Influenza-Viren weniger wirksam als
Fluvirucin B1 aus der B-Reihe. Während bereits zwei Syn-
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thesen von Fluvirucin B1 bekannt sind,[3] wurden Verbindun-
gen der A-Reihe bis jetzt noch nicht synthetisiert. Wir
beschreiben nun die erste asymmetrische Totalsynthese von
Fluvirucinin A1 3 (Schema 1), dem Aglycon von Fluviru-
cin A1. Unsere Synthesestrategie ermöglicht es, an allen
chiralen Zentren eine Reihe von Substituenten einzuführen.

Unser Synthesekonzept für 3 sah eine effiziente stereokon-
trollierte Bildung des Stereozentrums C6 durch eine zwei-
stufige Reaktionsfolge vor (Schema 1): Die stereoselektive
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Schema 1. Strategie der asymmetrischen Totalsynthese von Fluviruci-
nin A1 3. Cbz�Benzyloxycarbonyl, TBS� tert-Butyldimethylsilyl.

Vinyladdition an die Carbonylgruppe des Lactams 8, in dem
das Stereozentrum C10 der Zielverbindung schon vorhanden
ist, und die anschlieûende Amidenolat-induzierte Aza-Clai-
sen-Umlagerung[4] des dabei gebildeten 7 führen unter 1,5-
asymmetrischer Induktion zu 6 mit der gewünschten Kon-
figuration an C6. Die Stereozentren C2 und C3 werden nach
Evans et al. erzeugt.[5] Die abschlieûende Makrolactamisie-
rung,[6] eine effiziente Methode zur Herstellung von 14glied-
rigen cyclischen Lactamen, liefert die Titelverbindung 3.

Das benötigte 3-Ethylvalerolactam 8 wurde in zwei Schrit-
ten aus 3-(5-Azidopentanoyl)-4-methyl-5-phenyl-2-oxazolidi-
non erhalten [Gl. (1)],[7] wobei das Stereozentrum C10 von 3
generiert wurde, das in einer späteren Reaktionsstufe die
Konfiguration an C6 durch asymmetrische Induktion bestim-
men sollte. Das Lactam-N-Atom in 8 wurde benzyliert, und
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die anschlieûende, von uns entwickelte direkte diastereose-
lektive, durch LiAl(OEt)3H unterstützte Vinyladditon[8] an
die Carbonylgruppe lieferte das trans-disubstituierte Piperi-
din 9 neben dem cis-Isomer im Verhältnis 95:5 (Schema 2).[9]

NH

O

Me

N
Bn

Me

N

Me

O

N

Me

O

Me
N

Me

O

Me

CbzN

OLi

11

H

78 9

6

a, b c - e f

g, h

10

Schema 2. Synthese der Schlüsselverbindung 6 ausgehend von 8. a) NaH,
BnBr, THF, 0!25 8C, 79 %; b) LiAl(OEt)3H, Et2O; dann CH2CHMgBr,
0 8C, 70 %; c) Cl3CCH2OCOCl, CH3CN, Rückfluû, 74%; d) Zn, AcOH;
e) DMAP, (CH3CH2CO)2O, Et3N, CH2Cl2, 78% über zwei Stufen;
f) LHMDS, Toluol, Rückfluû, 74%; g) H2, Pd/C, MeOH; h) nBuLi, CbzCl,
THF, 94% bezogen auf 11. Bn�Benzyl, DMAP� 4-(Dimethylamino)py-
ridin, LHMDS�Lithiumbis(trimethylsilyl)amid.

Das isolierte trans-Isomer 9 wurde zum freien Amin deben-
zyliert, dessen Propionylierung 7 ergab. Die Amidenolat-
induzierte Aza-Claisen-Umlagerung von 7 führte problemlos
zum einzigen Produkt 11 mit dem Methyl-substituierten
Stereozentrum C6 der Zielverbindung 3 in der gewünschten
Konfiguration. Diese ausgezeichnete Diastereoselektivität
kann durch die günstige Sessel-Sessel-artige Konformation
des Übergangszustands 10 mit der äquatorialen Ethylgruppe
sowie die bevorzugte Z-Konfiguration der Enolatgruppe
erklärt werden.[4] Durch die Hydrierung der C-C-Doppelbin-
dung und Schützen der NH-Funktion durch die Benzyloxy-
carbonylgruppe (Cbz) wurde 11 in die Schlüsselverbindung 6
überführt.

In drei Schritten lieû sich 6 in den offenkettigen Ester 12
umwandeln (Schema 3): Die Reduktion mit DIBAL[10] zum
Aldehyd und anschlieûende Wittig-Reaktion sowie Reduk-
tion des resultierenden Olefins[11] mit NaBH4 lieferten das um
zwei C-Atome erweiterte 12. Die Einführung der Stereozen-
tren C2 und C3 mit der erforderlichen Konfiguration gelang
durch die Reduktion von 12 mit DIBAL und die anschlie-
ûende Kondensation[5] des Aldehyds mit dem Borenolat von
(4R,5S)-4-Methyl-5-phenyl-3-propionyl-2-oxazolidinon. Das
so erhaltene 13 konnte durch Schützen der Hydroxygruppe
als tert-Butyldimethylsilylether und aufeinanderfolgende Ab-
spaltungen des Oxazolidinonrests[12] und der Cbz-Schutz-
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Schema 3. Synthese von Fluvirucinin A1 3 ausgehend von 6. a) DIBAL,
CH2Cl2, ÿ78 8C; b) Ph3P�CHCO2Et, CH2Cl2, 70 % bezogen auf 6 ;
c) NaBH4, CuCl, THF/MeOH, 0 8C, 95%; d) DIBAL, CH2Cl2,
ÿ78 8C; e) (4R,5S)-4-Methyl-5-phenyl-3-propionyl-2-oxazolidinon,
Bu2BOTf, Et3N, CH2Cl2, ÿ78!0 8C, 79% bezogen auf 12 ; f) TBSOTf,
2,6-Lutidin, CH2Cl2, ÿ20 8C, 67 %; g) LiOH, 30proz. H2O2, THF/H2O,
72%; h) H2, Pd/C, MeOH, 100 %; i) Dimethylaminopropylethylcarbo-
diimid, C6F5OH, CH2Cl2; j) [nBu4N]F, THF, 62% bezogen auf 4. DIBAL�
Diisobutylaluminiumhydrid; TBSOTf� tert-Butyldimethylsilyltrifluorme-
thansulfonat.

gruppe in die w-Aminosäure 4 überführt werden. Die Umset-
zung von 4 mit Pentafluorphenol[13] in Gegenwart von Dime-
thylaminopropylethylcarbodiimid und anschlieûende Desily-
lierung lieferten Fluvirucinin A1 3, dessen physikalische und
spektroskopische Eigenschaften identisch waren mit denen
der natürlichen Verbindung.[2, 14]

Es ist uns hiermit gelungen, Fluvirucinin A1 in einer asym-
metrischen Synthese ausgehend von dem leicht zugänglichen
Lactam 8 erstmals herzustellen. Nach dieser eleganten Syn-
thesemethode, die eine diastereoselektive Vinyladdition an
eine Amidcarbonylgruppe und eine Amidenolat-induzierte
Aza-Claisen-Umlagerung als Schlüsselreaktionen beinhaltet,
sind antiviral wirksame Fluvirucinderivate leicht zugänglich.
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